DESARROLLO DE UN ENTORNO HARDWARE-SOFTWARE PARA EL CONTROL DE DRONES

AUTOR: ANDRÉS PÉREZ ORTEGA

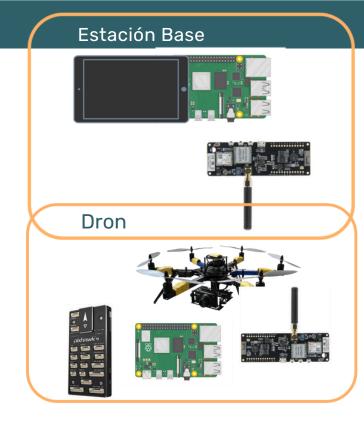
TUTORES: VÍCTOR A. ARAÑA PULIDO, FRANCISCO JOSÉ CABRERA ALMEIDA INSTITUCIÓN: GITT (SISTEMAS DE TELECOMUNICACIÓN) JULIO 2024

ULPGC Universidad de Las Palmas de Gran Canaria

Escuela de Ingeniería de Telecomunicación y Electrónica

INTRODUCCIÓN

El uso de drones o UAVs (Unmanned Aerial Vehicles) ha experimentado un crecimiento significativo debido a sus múltiples aplicaciones en tareas diversas como la vigilancia, seguimiento de incendios y rescates. Este TFG propone el desarrollo de un sistema de comunicación independiente y flexible entre la estación base y el dron utilizando la tecnología LoRa, con el objetivo de mejorar la eficiencia en la transmisión de datos y permitir la operación autónoma de los drones


OBJETIVOS

- Desarrollar e integrar un entorno de comunicación alternativo entre la estación base y la aeronave, permitiendo el vuelo autónomo sin la necesidad de un piloto o radio control.
- Implementar un sistema hardware-software independiente del estándar de telemetría y control del dron, utilizando tecnología LoRa para la comunicación de largo alcance.

METODOLOGÍA

Para alcanzar el objetivo del proyecto, Se comenzó con la integración del hardware, configurando los módulos LoRa para permitir la comunicación de largo alcance entre la estación base y el dron. Simultáneamente, se desarrolló el software utilizando el protocolo MAVLink para facilitar la comunicación robusta y eficiente entre ambos componentes. La programación y control del dron se implementaron mediante las librerías Pymavlink y DroneKit, que permitieron la creación de scripts personalizados para la gestión de waypoints y el control de vuelo.

Durante la fase de pruebas, se llevaron a cabo simulaciones utilizando SITL (Software In The Loop) para validar el funcionamiento del sistema en un entorno controlado. Estas pruebas iniciales permitieron ajustar y optimizar los componentes antes de realizar las pruebas de campo. Finalmente, se ejecutaron vuelos de prueba en condiciones reales para validar la eficiencia y robustez del sistema en la detección y seguimiento de incendios forestales.

RESULTADOS

El sistema demostró un desempeño en las misiones autónomas, validando la funcionalidad de la tecnología LoRa.

Se realizaron pruebas de campos a diferentes distancias y con diferentes tipos de waypoints. Estas prueba aseguró la eficacia de la comunicación a larga distancia y la capacidad del dron para centrarse en puntos específicos durante el vuelo.

CONCLUSIÓN

La implementación de la tecnología LoRa permitió operaciones autónomas eficientes y seguras, reduciendo la dependencia de supervisión humana continua. El sistema desarrollado no solo ofrece una solución flexible, sino que también abre la puerta a futuras mejoras y aplicaciones en el ámbito aéreo.

